Jump to content

Самый большой микропроцессор в мире


Recommended Posts

161165242415539055.png

Микросхема WSE изготовлена по современному 7-нм техпроцессу и содержит умопомрачительные 2,6 триллиона транзисторов, объединённых в 850 000 вычислительных ядер. Гигантский размер — не рекорд ради рекорда. Размещение огромного количества ядер на одном кристалле имеет существенные практические преимущества при моделировании нейронных сетей — а именно для этой цели предназначен новый супер-чип.

1611654218111220044.jpg

В настоящее время большая часть нейровычислений выполняется при помощи графических процессоров (GPU). Они подходят для этого лучше, чем CPU, поскольку содержат множество блоков, способных работать параллельно, и могут быстро выполнять операции над матрицами, к которым по большей части и сводится работа искусственных нейросетей. Но всё-таки изначально GPU разрабатывались с другими целями, и почти 90% их площади занимают компоненты, которые не могут быть использованы для задач искусственного интеллекта. Да и объём памяти на кристалле, которым располагают GPU, для этих целей слишком мал.

1611652648125342411.png

Вычислительная система CS-1 на базе Wafer Scale Engine

Архитектура WSE была специально разработана для нейровычислений и потому избавлена от вышеописанных недостатков. Здесь прямо на кристалле размещено 36 гигабайт памяти с максимально коротким временем доступа: все обращения обрабатываются за один такт, т. е. быстрее чем за наносекунду. Память обладает беспрецедентно высокой пропускной способностью — 9 петабайт в секунду (это в тысячи раз быстрее, чем в классических системах, где память реализована отдельно). Для связи между ядрами внутри одного блока и между разными блоками используются одинаковые интерфейсы, которые ещё на порядок быстрее.

И всё-таки в первую очередь создание WSE — это не архитектурный, а технологический триумф. Разработчикам пришлось решить массу проблем, которые просто не возникают в случае с чипами привычного размера. Так, супер-микросхема выделяет 15 кВт тепла, поэтому для неё не подходила ни одна из существующих систем охлаждения.

1611653057181768247.jpg

Блок с микросхемой WSE и системой питания. Справа — коннекторы для водяных помп

1611653290181667712.png

Высокопроизводительная помпа системы охлаждения

Более того, из-за огромных габаритов микросхемы возник эффект неравномерного теплового расширения кристалла и подложки, и пришлось ввести дополнительный компенсирующий слой. Трёхмерная система подвода электропитания, рассчитанная на ток 20 000 ампер, тоже была разработана специально для данного проекта. Корпусировку изделия и вовсе пришлось выполнять вручную.

161165317914655063.png

Компания TSMC, на мощностях которой выпускаются гигантские «вафли», смогла обеспечить сверхнизкий процент производственного брака, что позволило заложить в схему всего 1% дополнительных ядер, которые должны подменять неработоспособные.

1611652572111620328.jpg
Важное преимущество разработки Cerebras Systems — полная совместимость с существующими программными комплексами для разработки систем глубокого обучения, в частности, PyTorch и TensorFlow. При переходе на WSE не требуется переписывать ПО. Разработчики подсчитали, что вычислительная система на базе Wafer Scale Engine — CS-1 — в 150 раз производительнее, чем лучший из нынешних серверов на GPU, DGX-1, при этом занимает в 40 раз меньше места и потребляет в 20 раз меньше энергии.

1611653757168729029.jpg
Вычислительная система CS-1 без корпуса

Наверное, последней в ряду впечатляющих цифр должна стать стоимость микросхемы. Компания её не раскрывает, но по косвенным признакам можно судить, что она превышает 2 млн долларов. Это не отпугивает потенциальных заказчиков. Системы CS-1 уже работают в Аргоннской национальной лаборатории под Чикаго и Ливерморской национальной лаборатории им. Лоуренса; также они должны лечь в основу нового суперкомпьютера Neocortex в Питтсбурге. Благодаря разработкам Cerebras Systems на обучение сложных нейросетей будут уходить часы, а не недели, а значит, можно будет опробовать намного больше разных вариантов.

Возможно, в перспективе подобные системы помогут в реализации таких амбициозных планов, как моделирование работы мозга высших животных в реальном времени.


Просмотр полной топик

Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...
×
×
  • Create New...